Compact Extrapolation Schemes for a Linear Schrödinger Equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Extrapolation Cascadic Multigrid Method Combined with a Fourth-Order Compact Scheme for 3D Poisson Equation

In this paper, we develop a new extrapolation cascadic multigrid (ECMG) method to solve the 3D Poisson equation using the compact finite difference (FD) method. First, a 19-point fourth-order compact difference scheme with unequal meshsizes in different coordinate directions is employed to discretize the 3D Poisson equation on rectangular domains. By combining the Richardson extrapolation and t...

متن کامل

A Compact Scheme for a Partial Integro-Differential Equation with Weakly Singular Kernel

Compact finite difference scheme is applied for a partial integro-differential equation with a weakly singular kernel. The product trapezoidal method is applied for discretization of the integral term. The order of accuracy in space and time is , where . Stability and convergence in  norm are discussed through energy method. Numerical examples are provided to confirm the theoretical prediction ...

متن کامل

A Class of Nested Iteration Schemes for Generalized Coupled Sylvester Matrix Equation

Global Krylov subspace methods are the most efficient and robust methods to solve generalized coupled Sylvester matrix equation. In this paper, we propose the nested splitting conjugate gradient process for solving this equation. This method has inner and outer iterations, which employs the generalized conjugate gradient method as an inner iteration to approximate each outer iterate, while each...

متن کامل

A new class of central compact schemes with spectral-like resolution I: Linear schemes

In this paper, we design a new class of central compact schemes based on the cell-centered compact schemes of Lele [S.K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys. 103 (1992) 16-42]. These schemes equate a weighted sum of the nodal derivatives of a smooth function to a weighted sum of the function on both the grid points (cell boundaries) and the cel...

متن کامل

ull-wave-equation depth extrapolation for migration

Most of the traditional approaches to migration by downward extrapolation suffer from inaccuracies caused by using one-way propagation, both in the construction of such propagators in a variable background and the suppression of propagating waves generated by, e.g., steep reflectors. We present a new mathematical formulation and an algorithm for downward extrapolation that suppress only the eva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: American Journal of Computational Mathematics

سال: 2014

ISSN: 2161-1203,2161-1211

DOI: 10.4236/ajcm.2014.43017